IMING CUI

Applied Mathematics and Statistics Dept., Johns Hopkins University, Maryland, USA 21218 **J** (+1) 667-263-9069 **▼** gcui6@jhu.edu **In** LinkedIn

CANDIDATE INFORMATION

- 4th year Ph.D. Candidate in Applied Mathematics and Statistics, Johns Hopkins University
- Research group: Algorithms and Complexity (CS Theory group)
- Research focus: Approximation and Online Algorithms with Machine-Learned Predictions

EDUCATIONAL BACKGROUND

Johns Hopkins University

Doctor of Philosophy in Applied Math and Statistics

University of Oxford

Master of Science in Mathematical Sciences

University of Liverpool

Bachelor of Science with Honours in Mathematics (First Class)

RELEVANT COURSEWORK

- Algorithms
- Approximation Algorithms
- Machine Learning
- Probability Theory
- Statistics Theory
- Convex Optimization
- Continuous Optimization
- Combinatorial Optimization
- Matrix Analysis
- Real Analysis
- Numerical analysis
- Data Science

RESEARCH PROJECT EXPERIENCES

Densest subgraph problem with fractional predictions

• Developing learning-augmented algorithms to efficiently obtain suboptimal subgraphs under fractional predictions

Ski rental with distributional predictions

- Designed learning-augmented algorithms to the classical ski rental problem with any distributional prediction
- Provided high level bounds and proved graceful degradation of algorithm performance with unknown increasing error
- Showed robustness of the algorithm and proved better performance compared to the state-of-the-art algorithm

Controlling tail risk in two-slope ski rental

September 2023 – July 2024

August 2024 - June 2025

August 2022 -

Graduate with Merit

GPA: 4.0/4.0

July 2025 -

Adviser: Dr. Michael Dinitz

September 2021 – June 2022

September 2017 - June 2021

- Paper accepted at Approximation and Online Algorithms (WAOA 2025) and invited to special issue of Acta Informatica
- Developed technical theorems to fully understand the structure of optimal solution(s) for the problem
- Designed two algorithms to compute the optimal solution(s) for the problem

β -expansions

January 2021 - June 2021

- Finished a long report about theorems and properties of β -expansions from dynamical systems viewpoint
- Exploited the number of G-expansions, established a sophisticated theorem and gave a five page formal proof
- Studied Uniqueness expansions of points, provided new proofs of lemmas and theorems

PROFESSIONAL SKILLS

- Programming Languages: Python (Pandas, Numpy), Java
- Office Tools: Microsoft Office (Excel, Word, PowerPoint), Google Workspace (Docs, Sheets, Slides)
- Math Tools: LaTeX, MATLAB
- Currently learning: SQL, Tableau, C++

HONORS AND AWARDS

- Bronze medal in 28th International Mathematics Competition for University Students
- The Advance of Algorithm Contest in the Second Round on the Rank List of Facebook Hacker Cup
- 2019-2020, 2020-2021 University of Liverpool Excellence Scholarship (1/320)
- 2019 Summer Undergraduate Research Fellowship

EXTRACURRICULAR / ACADEMIC SERVICE

- Teaching Assistant in Numerical linear Algebra, Approximation Algorithms from 2022
- University of Oxford Mathematics Admission Test (MAT) Grader

HOBBIES AND INTERESTS

- Playing the piano, listening to music, reading
- Travelling the world, hiking, running, playing ball games